[口头报告]实验室地震机器学习预测研究

实验室地震机器学习预测研究
编号:2210 稿件编号:13 访问权限:私有 更新:2023-04-11 10:19:34 浏览:355次 口头报告

报告开始:2023年05月06日 16:50 (Asia/Shanghai)

报告时间:10min

所在会议:[9A] 9A、地球物理与大地测量 » [9A-1] 9A-1 地球物理与大地测量

暂无文件

摘要
Predicting earthquakes has long been an unceasing exploration in geoscience. Recently, machine learning (ML) has been tried to predict laboratory slip events based on the stick-slip dynamics data obtained from laboratory shear experiments, with the ultimate goal of seeking appropriate approaches and procedures for natural earthquake prediction. However, the data utilized in existing work are generally small, i.e., acquired from only single or a few sensor points. Here, by employing the combined finite-discrete element method (FDEM), we explicitly simulate a two-dimensional sheared granular fault system, and place 2203 densely distributed “sensor” points inside the model to collect abundant fault dynamics data such as displacement and velocity during the stick-slip cycles. We use LightGBM to train the data and predict the normalized gouge-plate shear stress (i.e., the indicator of stick-slips). During the training, we build the importance ranking of input features, and select the ones with top importance to prediction as optimized features. We gradually optimize and adjust the input feature data, and finally reach a LightGBM model with acceptable prediction accuracy (R2 = 0.91). The SHAP (SHapley Additive exPlanations) values of input features are also calculated to quantify their contributions to the prediction results. The ML analyses demonstrate that the large amounts of fault dynamics data contain the necessary information for predicting upcoming slip events; however, they may be redundant and thus should be optimized to improve prediction performance. The LightGBM together with the SHAP value approach could not only accurately predict the occurrence time and magnitude of laboratory earthquakes, but also have the potential to uncover the relationship between microscopic fault dynamics and macroscopic stick-slip behaviors. This work may shed light on natural earthquake prediction, and also provides a possible way to explore useful precursors for earthquake prediction using ML approaches.
 
关键字
实验室地震,机器学习
报告人
高科
研究员 南方科技大学

稿件作者
高科 南方科技大学
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

会务总协调、疫情防控:

沈焕锋(13163235536;shenhf@whu.edu.cn)

管小彬(18007973663;guanxb@whu.edu.cn)

魏秀琴(15871750333;weixiuqin@whu.edu.cn)

会场安排:

沈焕锋(13163235536;shenhf@whu.edu.cn)

李长冬(15327198910;lichangdong2008@126.com)

张 亮(15827200707;lzhang@whigg.ac.cn)

徐 鹏(13554674258;xupengwhu@whu.edu.cn)

学术安排:

王伦澈(13349889828;wang@cug.edu.cn)

庄艳华(13349889826;zhuang@apm.ac.cn)

李星华(15527964369;lixinghua5540@whu.edu.cn)

会议注册:

管小彬(18007973663;guanxb@whu.edu.cn)

赵 林(18071070948;linzhao@whu.edu.cn)

会议财务:

张传喜(13627137374;zhangchuanxi@whu.edu.cn)

石玉婷(13476286537;yutingshi@vip.qq.com)

商业赞助:

阮志敏(15871826028;ruanzm@whu.edu.cn)

黄文丽(13693626212;wenli.huang@whu.edu.cn)

会议服务,酒店预定,网站、注册系统服务:

曹雪峰(18971567453;carol@chytey.com)

金钰壹(18271358859;jinyuyi@whu.edu.cn)

会务总协调、疫情防控:
沈焕锋(13163235536;shenhf@whu.edu.cn)
管小彬(18007973663;guanxb@whu.edu.cn)
魏秀琴(15871750333;weixiuqin@whu.edu.cn)
会场安排:
沈焕锋(13163235536;shenhf@whu.edu.cn)
李长冬(15327198910;lichangdong2008@126.com)
张 亮(15827200707;lzhang@whigg.ac.cn)
徐 鹏(13554674258;xupengwhu@whu.edu.cn)
学术安排:
王伦澈(13349889828;wang@cug.edu.cn)
庄艳华(13349889826;zhuang@apm.ac.cn)
李星华(15527964369;lixinghua5540@whu.edu.cn)
会议注册:
管小彬(18007973663;guanxb@whu.edu.cn)
赵 林(18071070948;linzhao@whu.edu.cn)
会议财务:
张传喜(13627137374;zhangchuanxi@whu.edu.cn)
石玉婷(13476286537;yutingshi@vip.qq.com)
商业赞助:
阮志敏(15871826028;ruanzm@whu.edu.cn)
黄文丽(13693626212;wenli.huang@whu.edu.cn)
会议服务,酒店预定,网站、注册系统服务:
曹雪峰(18971567453;carol@chytey.com)
金钰壹(18271358859;jinyuyi@whu.edu.cn)
注册缴费 提交稿件