[口头报告]Improved Yield Prediction of Ratoon Rice Using Unmanned Aerial Vehicle-Based Multi-Temporal Feature Method

Improved Yield Prediction of Ratoon Rice Using Unmanned Aerial Vehicle-Based Multi-Temporal Feature Method
编号:225 稿件编号:2944 访问权限:私有 更新:2023-04-07 21:12:19 浏览:560次 口头报告

报告开始:2023年05月06日 16:50 (Asia/Shanghai)

报告时间:10min

所在会议:[7B] 7B、遥感与地理信息科学 » [7B-1] 7B-1 遥感与地理信息科学

演示文件

提示:该报告下的文件权限为私有,您尚未登录,暂时无法查看。

摘要
Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture. However, the unique agronomic practice (i.e., varied stubble height treatment) in rice ratooning could lead to inconsistent rice phenology, which had a significant impact on yield prediction of ratoon rice. Multi-temporal unmanned aerial vehicle (UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods. Thus, in this study, we explored the performance of combination of agronomic practice information (API) and single-phase, multi-spectral features [vegetation indices (VIs) and texture (Tex) features] in predicting ratoon rice yield, and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice. The results showed that the integrated use of VIs, Tex and API  improved the accuracy of yield prediction than single-phase UAV imagery-based feature  [single-phase model VIs&Tex + API: the coefficient of determination (R2) between 0.502–0.732, the root mean square error (RMSE) between 0.295–0.499, the relative root mean square error (RRMSE) between 0.073–0.122] with the panicle initiation stage being the best period for yield prediction (R2 as 0.732, RMSE as 0.406, RRMSE as 0.101). More importantly, compared with previous multi-temporal UAV-based methods, our proposed multi-temporal method can increase R2 by 0.020–0.111 and decrease RMSE by 0.020–0.080 in crop yield forecasting. This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture, which is of great significance to take timely means for ensuring ratoon rice production and food security.
关键字
ratoon rice; yield prediction; unmanned aerial vehicle; multi-temporal feature
报告人
周龙飞
华中农业大学

稿件作者
周龙飞 华中农业大学
孟冉 华中农业大学
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

会务总协调、疫情防控:

沈焕锋(13163235536;shenhf@whu.edu.cn)

管小彬(18007973663;guanxb@whu.edu.cn)

魏秀琴(15871750333;weixiuqin@whu.edu.cn)

会场安排:

沈焕锋(13163235536;shenhf@whu.edu.cn)

李长冬(15327198910;lichangdong2008@126.com)

张 亮(15827200707;lzhang@whigg.ac.cn)

徐 鹏(13554674258;xupengwhu@whu.edu.cn)

学术安排:

王伦澈(13349889828;wang@cug.edu.cn)

庄艳华(13349889826;zhuang@apm.ac.cn)

李星华(15527964369;lixinghua5540@whu.edu.cn)

会议注册:

管小彬(18007973663;guanxb@whu.edu.cn)

赵 林(18071070948;linzhao@whu.edu.cn)

会议财务:

张传喜(13627137374;zhangchuanxi@whu.edu.cn)

石玉婷(13476286537;yutingshi@vip.qq.com)

商业赞助:

阮志敏(15871826028;ruanzm@whu.edu.cn)

黄文丽(13693626212;wenli.huang@whu.edu.cn)

会议服务,酒店预定,网站、注册系统服务:

曹雪峰(18971567453;carol@chytey.com)

金钰壹(18271358859;jinyuyi@whu.edu.cn)

会务总协调、疫情防控:
沈焕锋(13163235536;shenhf@whu.edu.cn)
管小彬(18007973663;guanxb@whu.edu.cn)
魏秀琴(15871750333;weixiuqin@whu.edu.cn)
会场安排:
沈焕锋(13163235536;shenhf@whu.edu.cn)
李长冬(15327198910;lichangdong2008@126.com)
张 亮(15827200707;lzhang@whigg.ac.cn)
徐 鹏(13554674258;xupengwhu@whu.edu.cn)
学术安排:
王伦澈(13349889828;wang@cug.edu.cn)
庄艳华(13349889826;zhuang@apm.ac.cn)
李星华(15527964369;lixinghua5540@whu.edu.cn)
会议注册:
管小彬(18007973663;guanxb@whu.edu.cn)
赵 林(18071070948;linzhao@whu.edu.cn)
会议财务:
张传喜(13627137374;zhangchuanxi@whu.edu.cn)
石玉婷(13476286537;yutingshi@vip.qq.com)
商业赞助:
阮志敏(15871826028;ruanzm@whu.edu.cn)
黄文丽(13693626212;wenli.huang@whu.edu.cn)
会议服务,酒店预定,网站、注册系统服务:
曹雪峰(18971567453;carol@chytey.com)
金钰壹(18271358859;jinyuyi@whu.edu.cn)
注册缴费 提交稿件