[张贴报告]TOC content prediction of organic-rich shale using the machine learning algorithm comparative study of random forest, support vector machine, and XGBoost

TOC content prediction of organic-rich shale using the machine learning algorithm comparative study of random forest, support vector machine, and XGBoost
编号:603 稿件编号:290 访问权限:私有 更新:2023-04-08 15:33:50 浏览:422次 张贴报告

报告开始:2023年05月06日 08:00 (Asia/Shanghai)

报告时间:0min

所在会议:[SP] 张贴报告专场 » [SP-2-1] 2、地球化学

暂无文件

摘要
The total organic carbon (TOC) content of organic-rich shale is a key parameter for screening the potential source rocks and sweet spots of shale oil/gas. Traditional methods of determining the TOC content, such as the geochemical experiments and the empirical mathematical regression method, are either high cost and low-efficiency, or universally non-applicable and low-accuracy. In this study, we propose three machine learning techniques to predict the TOC content using the well logs and their performance are compared. First, the Decision Tree algorithm is used to identify the optimal set of well logs from a total of 15 commonly used well logs, and three machine learning algorithms including random forest (RF), support vector regression (SVR), and XGBoost are used to predict the TOC content of organic-rich shale from the optimal well log set. Then, a total of 816 data points of well logs data and TOC content data collected from five different shale formations are used to train and test above three models. Finally, the three models are used to predict the unseen TOC content data from Shahejie shale. Result of research shows that the RF provides the best prediction for the TOC content, with R2=0.9141, RMSE=0.329, and MAE=0.252, followed by the XGBoost, while the SVR gives the lowest predictive accuracy. Nevertheless, all three models overperform the traditional Schmoker gamma-ray log method, multiple linear regression method and ΔlgR method.
 
关键字
TOC; Random forest; Support vector machine; XGBoost; Organic-rich shale
报告人
孙江涛
西安石油大学

稿件作者
孙江涛 西安石油大学
发表评论
验证码 看不清楚,更换一张
全部评论

联系我们

会务总协调、疫情防控:

沈焕锋(13163235536;shenhf@whu.edu.cn)

管小彬(18007973663;guanxb@whu.edu.cn)

魏秀琴(15871750333;weixiuqin@whu.edu.cn)

会场安排:

沈焕锋(13163235536;shenhf@whu.edu.cn)

李长冬(15327198910;lichangdong2008@126.com)

张 亮(15827200707;lzhang@whigg.ac.cn)

徐 鹏(13554674258;xupengwhu@whu.edu.cn)

学术安排:

王伦澈(13349889828;wang@cug.edu.cn)

庄艳华(13349889826;zhuang@apm.ac.cn)

李星华(15527964369;lixinghua5540@whu.edu.cn)

会议注册:

管小彬(18007973663;guanxb@whu.edu.cn)

赵 林(18071070948;linzhao@whu.edu.cn)

会议财务:

张传喜(13627137374;zhangchuanxi@whu.edu.cn)

石玉婷(13476286537;yutingshi@vip.qq.com)

商业赞助:

阮志敏(15871826028;ruanzm@whu.edu.cn)

黄文丽(13693626212;wenli.huang@whu.edu.cn)

会议服务,酒店预定,网站、注册系统服务:

曹雪峰(18971567453;carol@chytey.com)

金钰壹(18271358859;jinyuyi@whu.edu.cn)

会务总协调、疫情防控:
沈焕锋(13163235536;shenhf@whu.edu.cn)
管小彬(18007973663;guanxb@whu.edu.cn)
魏秀琴(15871750333;weixiuqin@whu.edu.cn)
会场安排:
沈焕锋(13163235536;shenhf@whu.edu.cn)
李长冬(15327198910;lichangdong2008@126.com)
张 亮(15827200707;lzhang@whigg.ac.cn)
徐 鹏(13554674258;xupengwhu@whu.edu.cn)
学术安排:
王伦澈(13349889828;wang@cug.edu.cn)
庄艳华(13349889826;zhuang@apm.ac.cn)
李星华(15527964369;lixinghua5540@whu.edu.cn)
会议注册:
管小彬(18007973663;guanxb@whu.edu.cn)
赵 林(18071070948;linzhao@whu.edu.cn)
会议财务:
张传喜(13627137374;zhangchuanxi@whu.edu.cn)
石玉婷(13476286537;yutingshi@vip.qq.com)
商业赞助:
阮志敏(15871826028;ruanzm@whu.edu.cn)
黄文丽(13693626212;wenli.huang@whu.edu.cn)
会议服务,酒店预定,网站、注册系统服务:
曹雪峰(18971567453;carol@chytey.com)
金钰壹(18271358859;jinyuyi@whu.edu.cn)
注册缴费 提交稿件